This question paper conta	ins	4 printed pages]
Roll No.		CALL CONTRACTOR
S. No. of Question Paper	:	6432
Unique Paper Code	:	32491401
Name of the Paper	:	Human Physiology
Name of the Course	:	B.Sc. (Hons.) Biochemistry
Semester	:	N
Duration : 3 Hours		Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all including

Q. No. 1 which is compulsory.

(a) Define the following :

1.

- (i) Cardiac Output
- (ii) Renal Plasma Flow
- (iii) Depolarisation
- (iv) Enteric Reflex
- (v) Total Lung Capacity.

(b) What is the physiological term for the following :

(i) The molecule used to detect the GFR.

(ii) Increase in platelets number.

5×1

	(2)	6432	
(/	iii) A blood clot flowing throu	gh the circulation.	
(h	v) Amount of blood pumped out	of the heart per cycle.	
(v)) The molecule responsible secretion only.	for decreased FSH	
(<i>vi</i>)) Rhythmic movements in the	small intestine.	
(vii)) Measurement of electrical con-	ductivity of the brain.	
(viii)) Onset of menstrual cycle in	women.	
(<i>ix</i>)	Amount of air remaining in the	lungs after a normal	
	tidal expiration.	9×1	1.14
) Give	the full form of the following	;	
(/)	JGA		
(<i>ii</i>)	EDV		5
(<i>iii</i>) I	IPSP		
(<i>îv</i>) E	ECG		
(v) A	NNF.	5×1	
Give the	e importance of brain stem.		
How mar	ny kinds of cells are present in th	ne central nervous	

(c)

(a)

(*b*)

(c)

system ? Describe them.

How is cerebrospinal fluid different from blood ?

		(3)	6422
3.	Exp	lain the following with the help of diagram/flow ch	0432
	(/)	Juxtaglomerular apparatus in the kidney	art ,
	(<i>ii</i>)	Hepatic lobule of liver	
	(<i>iii</i>)	Cardiac cycle	
	(<i>iv</i>)	Mature Graafian Follicle.	3.5×4
4.	Diff	erentiate between the following :	
	(<i>i</i>)	Bohr's effect and Haldane effect	
	(<i>ii</i>)	Hemostasis and homeostasis	
	(iii)	Parasympathetic and Sympathetic nervous systemeters	em
,	(<i>iv</i>)	Alkalosis and Acidosis.	3.5×4
5.	Expl	ain how/why ?	
	(<i>i</i>)	There is need for acclimatization at high altitu	de
	(<i>ii</i>)	EEG waves change in sleep awake cycle	
	(<i>iii</i>)	Only one sperm can fertilize an egg	
	(iv)	Premature infants often suffer from respiratory	distress
		syndrome	
	(v)	Cardiac muscle does not undergo tetany	
	(vi)	Bile juice helps in fat absorption	
	(vii)	Edema occurs in glomerulonephritis.	2×7

6. Write short notes on the following :

- (i) Kidney Failure
- (ii) Jaundice
- (iii) Anemia
- (iv) Hypertension.

- 3.5×4
- 7. Give the mechanism of action of the following :
 - (i) Counter current multiplication system of urine formation
 - (ii) Sliding theory of muscle contraction
 - (*iii*) Fibrinolytic system of blood clotting. 5,4,5
- 8. Give the location, function and mechanism of action of the following receptors :

- (i) Nociceptor
- (ii) Baroreceptors
- (iii) Thermoreceptor
- (iv) Chemoreceptors
- (v) Stretch receptor
- (vi) Gustatory receptor.

Kalkaj

(Write your Roll No. on the top immediately on receipt of this question paper.) Answer any five questions. Question No. 1 is compulsory.

1. (a) State True or False. Justify your answer :

- (*i*) The polarity of DNA helicase is defined by the DNA strand that is displaced.
 -) The enzyme RNaseH is able to remove the entire RNA primer.
 - (iii) The stability of a DNA helix increases in 1M NaCl as compared to an aqueous solution.
- (*iv*) A larger stretch of DNA is synthesized in *E.coli*by DNA Polymerase I than by DNA Polymerase III.

- (v) An *E. coli* strain that is dam⁻ (DNA adenine methylase minus) has a higher frequency of mutations than a dam⁺ host. $5\times 2=10$
- (b) (i) Why does DNA have thymine instead of uracil as a natural base ? 3
 - (ii) SOS response is considered to be a last resort by the cell to survive DNA damage. Explain. 3
 - (iii) What is the significance of the sequence5'TTAGGG3' in eukaryotic chromosomes ? 3
- (a) What is a replisome ? Explain the role of each of its components. 5
 - (b) Outline and compare the steps involved in mismatch repair
 and nucleotide excision repair.
 - (c) Describe an experiment used to determine the length of
 DNA associated with nucleosomes.
- (a) A relaxed, circular, double stranded DNA molecule
 (2000 bp) has 10 bp per turn. What is the L₀ value of this molecule ? DNA gyrase introduces 16 negative supercoils in this molecule. What is its value of L now ? What is the superhelical density of this molecule ? 3

2.

- (b) What are the factors that contribute to a decreased gene density in eukaryotic cells ?
- (c) What are the various domains of the DNA polymerase enzyme ? Discuss their roles in the functioning of the enzyme.
 6
- 4. (a) Explain in detail the Holliday model of recombination illustrating the two sets of outcomes that arise from its resolution.
 - (b) Discuss the agents that cause inhibition of DNA replication. How are these inhibitors useful in medicine ? 5

- 5. (a) How does the eukaryotic cell ensure that not even one of its several hundred origins of replication is activated more than once in the cell cycle ?
 - (b) What is the effect of alkylating agents on DNA ? = 3
 - (c) Explain in detail the role of Rec BCD in choosing between recombination or destruction of DNA that enters the *E.coli* cell ?

6.	(<i>a</i>)	What is conservative site specific recombination	1 ?
		Explain in detail.	6
	(b)	What problem would arise in the process of replicat	ion
		in the absence of topoisomerases ?	3
	(c)	Describe the Ames test and its applications.	5
7.	(<i>a</i>)	What are the different classes of transposons ? Expl	ain
		their genetic organization.	6
	(<i>b</i>)	How does Lambda DNA integrate into the E.c.	coli
		genome ?	5
	(<i>c</i>)	What is polymerase switching ?	3
8.	Write	short notes on the following :	
	(<i>a</i>)	Translesion repair	
	(<i>b</i>)	Nucleosome assembly	
	(<i>c</i>)	Factors stabilizing the DNA double helix	
	(<i>d</i>)	Rolling circle replication. 3,5	,3,3

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt *five* questions in all.

Question No. 1 is compusiory.

Use of scientific calculator/log tables may be allowed.

1. Explain the following :

Alanine and glutamine are present in much higher concentration in blood than any other amino acids.

Glutathione functions as a redox buffer.

Plants do not possess δ amino levulinic acid synthetase activity yet porphyrins are required for the synthesis of chlorophyll.

(iv) L-asparaginase is an effective chemotherapeutic agent.

- (v) In humans, the consumption of PRPP by salvage pathway is greater than the consumption of PRPP for *de novo* purine biosynthesis.
- (*vi*) S-adenosyl methionine (SAM) has a higher methyl group transfer potential than N⁵-methyl tetra hydro folate.
- (vii) Nitrogen fixation is energetically expensive.
- (viii) Genetic defects in enzymes involved in urea cycle can be life threatening.
- (*ix*) Sulfonamide drugs do not interfere with mammalian purine synthesis.
- (x) Von Gierke's disease results in hyperuricemia. $9 \times 2,1$
- Write the steps involved in the following enzymatic conversions :
 - (*i*) IMP to Uric acid
 - (ii) Carbamoyl phosphate to UMP
 - (iii) Histidine to N-formimino glutamate
 - (*iv*) dUMP to dTTP

3.

(v) 3-phosphoglycerate to serine or Glutamate to proline

3,3,3,3,2

- (a) Draw a well labelled diagram of nitrogen cycle and name any two nitrogen fixing organisms.
 - (b) Discuss the regulation of heme biosynthesis. Why does lead toxicity cause anemia ?
 - (c) Pyridoxal phosphate is a versatile cofactor. Support your answer with suitable examples. 4,5,5

- Give the biochemical basis and clinical symptoms associated with the following metabolic disorders (any *four*) :
 - (i) = SCID
 - (*ii*) Hartnup disease
 - (*iii*) Orotic aciduria
 - (n) Maple syrup urine disease
 - (v) Lesch Nyhan Syndrome.

- (*i*) Purine nucleotide cycle
- (*ii*) Glucose-Alanine cycle
- (*iii*) Urea cycle.
- 6. (a) Name and draw the structure of alpha keto acid resulting when each of the following amino acid undergoes transamination :
 - (i) Aspartate
 - (ii) Alanine
 - (*iii*) Glutamate
 - (*iv*) Phenylalanine
 - (v) Arginine.
 - (b) What are the different pathways for the breakdown and synthesis of glycine ? Explain.
 - (c) Draw a purine ring and mark the origin of Carbon and Nitrogen atoms. 5,6,3

4,5,5

- 7. (a) Give one scientific contribution of the following scientists :
 - (i) David Shemin
 - (ii) Thomas Sydenham
 - (iii) A. Garrod
 - (iv) Jo Anne Stubbe.
 - (b) Write the mode of action of the following inhibitors and highlight their use in medicine :
 - (i) Allopurinol
 - (ii) Azaserine
 - (iii) 6-mercaptopurine
 - (*iv*) 5-fluorouracil
 - (v) Methotrexate. 4,10
- 8. (a) Compare the following pairs :
 - (i) Kwashiorkor and Marasmus
 - (ii) Transamination and Oxidative Deamination
 - (*iii*) Carbamoyl phosphate synthetase I and Carbamoyl phosphate synthetase II
 - (iv) De novo synthesis of purines and pyrimidines.
 - (b) Since dUTP is not a normal component of DNA, why do you suppose ribonucleotide reductase has the capacity to convert UDP to dUDP ?
 12,2

[This question paper contains 6 printed pages.]

		Your Roll No
Sr. No. of Question Paper	:	2180 IC 2019
Unique Paper Code	a 8	32491401
Name of the Paper	•	Human Physiology
Name of the Course	:	B.Sc. (Hons.) Biochemistry
Semester	:	IV
Duration : 3 Hours		Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt five questions in all including Q. No. 1 which is compulsory.
- 1. (a) Define the following :
 - (i) Homeostasis
 - (ii) End diastolic Volume
 - (iii) Transpulmonary Pressure

(iv)	Regurgitation
------	---------------

(v) Receptor desensitization

(vi) Osteoclast

(vii) Implantation

 (1×7)

(b) Justify/Give Reasons :

- (i) Hemoglobin functions as "tissue oxygen buffer"
- (ii) The left ventricle of the heart shows physiological hypertrophy
- (iii) Osteoblasts help to build up the bone.
- (iv) Gastric mucosa is resistant to autodigestion
- (v) RBC count is less in females
- (vi) Action potentials are all-or-none events.

 (2×6)

2. Differentiate between the following:

(a) REM and NREM

- (b) Heterometric and homometric regulation of cardiac output
- (c) Gastric and Intestinal phase of gastrointestinal regulation
- (d) Peripheral and Central chemoreceptors (3.5×4)
- (a) What is CSF? Explain how the chemical composition of the CSF is different from that of blood.
 - (b) What will happen if:
 - (i) PCT of tubular segment is removed
 - (ii) Thin segment of loop of Henle is removed
 - (c) Describe sequence of events that occur during swallowing.
 (3,6,5)
 - 4. (a) Give the physiological basis of following : (any 4)
 - (i) Anemia
 - (ii) Peptic ulcer

- (iii) Renal alkalosis
 - (iv) Emphysema
 - (v) Atherosclerosis (3×4)

(b) Explain how plasticity of neurons helps in learning? (2)

- 5. (a) Give one word for the following :
 - (i) Receptors for the pain stimulus
 - (ii) Supporting cells of peripheral nervous system
 - (iii) Sensation from the skin, muscles, bone, tendons and joints
 - (iv) The ability to recall past events at the conscious or unconscious level
 - (b) A person's cardiac output (CO) is 7 litre/minute and Mean Arterial Pressure (MAP) is 140 mmHg. What is person's total peripheral resistance?
 - (c) What are the various components of Countercurrent multiplier system? Why it is called so?

- (d) Why a testis is considered to be immunologically privileged site? (4,3,5,2)
- Explain the following with the help of diagram and flow chart :
 - (a) Tracheo-bronchial tree
 - (b) Different layers of GI tract
 - (c) Ovarian and uterine changes during menstrual cycle (4,5,5)
- 7. Write short notes on the following :
 - (a) Role of vitamin K in coagulation
 - (b) Blood flow into the liver
 - (c) Regulation of arterial pressure
 - (d) Transport of carbon-dioxide in the blood

(3,3,4,4)

- 8. Explain the following mechanisms :
 - (a) Voluntary control of micturition

- (b) Capacitation and transport of sperm
- (c) Ionic channels and their role in initiating action potential in skeletal muscle (5,5,4)

[This question paper contains 6 printed pages.]

		Your Roll No
Sr. No. of Question Paper	:	2181 IC
Unique Paper Code	:	32491402
Name of the Paper	:	Gene Organization, Replication and Repair
Name of the Course	:	B.Sc. (Hons.) Biochemistry
Semester	:	IV
Duration : 3 Hours		Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt five questions in all.
- 3. Question No. 1 is compulsory.

- 1. (a) Comment on the following :
 - (i) Transposition causes rearrangement of segments of DNA.

- (b) Explain the key steps of homologous recombination.
- (c) Differentiate between base excision repair and nucleotide excision repair. (6,4,4)
- (a) Explain the mechanism of translession synthesis during DNA damage.
 - (b) Write down the steps of DNA processing by Rec BCD enzymes.
 - (c) Compare and contrast serine recombinases with tyrosine recombinases with their mechanism.

(4,5,5)

- 5. (a) How does λ integrase promote integration and excision of a viral genome into host chromosome?
 - (b) Explain the mechanism of mismatch repair in prokaryotes.
 - (c) Explain the role of methyl transferases and acetyl transferases in nucleosome assembly and disassembly.
 (5,4,5)

5

- (a) Name the various classes of transposition and explain cut and paste transposition.
 - (b) Eukaryotic DNA has higher Cot value than prokaryotic DNA. Explain.
 - (c) Discuss the roles of various types of topoisomerases.
 (6,4,4)
- 7. (a) Justify the following statements :
 - (i) The sliding DNA clamp makes DNA polymerase more processive.
 - (ii) D loop mode of replication is different from rolling circle model of replication.
 - (iii) Ethidium bromide affects the topology of closed circular DNA
 - (iv) The fidelity of replication is ensured.
 - (b) How does DNA renature? Briefly explain its correlation with DNA complexity.

 $(2.5 \times 4, 4)$

- 8. Write short notes on the following:
 - (a) Replicon model of two components for replication

6

- (b) Telomerase enzyme in eukaryotes
- (c) Replicative transposition

(4, 5, 5)